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Abstract: This paper presents an approach based on fault tree analysis and subset simulation for quantifying uncertainty in the risk
assessment of complex industrial facilities. Downtime estimation of industrial facilities after an extreme event is critical for risk valuation,
as business interruption contributes significantly to monetary losses. Industrial facilities are complex systems with many critical, interdepend-
ent components. Such facilities are thus amenable to modeling using fault trees. Fault tree analysis breaks down a facility’s layout into system
components and links component failure probabilities through Boolean logic to estimate the larger system’s failure probability. In estimating
system failure probability, the lack of knowledge about failure probabilities of individual components introduces uncertainty. Subset sim-
ulation offers an efficient approach for propagating these component-level uncertainties to the system level. However, when parameters are
highly correlated, traditional algorithms used in subset simulation may suffer from low acceptance rates (ratio of new samples to total sam-
ples), resulting in repeated samples, thereby compromising efficiency. This paper demonstrates that the proposed treatment allows application
of subset simulation to uncertainty quantification of large fault trees using a case study of a coal-fired power plant. DOI: 10.1061/(ASCE)
NH.1527-6996.0000360. © 2020 American Society of Civil Engineers.
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Introduction

Following major natural disasters, losses from business interruption
represent a significant percentage of total monetary loss and can far
exceed losses from property damage, especially in industrialized re-
gions (Tierney 1997; Alesch and Holly 1998; Chang 2000; Alesch
et al. 2001; Chang and Falit-Baiamonte 2002; Erdik and Durukal
2003; Kunz et al. 2013; Tatano and Kajitani 2012; Krausmann
and Cruz 2013; Barlyn 2017). In seismic risk assessment, methods
for estimating property damage have been extensively studied; how-
ever, little attention has been given to estimating losses from business
interruption (Godschalk 2003; Webb et al. 2000; Heatwole and Rose
2013; Yang et al. 2016). Indeed, no industry standard for downtime
estimation currently exists. Although projects such as HAZUS
(FEMA 2010) and ATC-25 (ATC 1991) have provided downtimes
for generic lifeline facilities based on empirical data and expert

opinion, these downtimes do not account for site-specific layout
and dependencies between the components and are thus useful only
in regional loss assessment context and not in a site-specific context.

Industrial facilities, such as power plants and oil refineries, are
systems composed of several interdependent structural, mechani-
cal, and electrical components (Kiremidjian et al. 1985). Such fa-
cilities are therefore appropriate for representation using fault
trees (Flammini et al. 2005; Lindhe et al. 2009; Norberg et al.
2009; Rao et al. 2009; Porter and Ramer 2012). Fault trees esti-
mate the failure probability of a facility based on the failure prob-
abilities specified for each of the facility’s critical components.
Values for component-level failure probabilities are defined by
(1) fragility curves that represent the conditional probability of
a component failing (i.e., exceeding a damage state) given a seis-
mic demand parameter [e.g., peak ground acceleration (PGA),
spectral acceleration, drift ratio] (Hwang and Chou 1998; Unanwa
et al. 2000; Simpson et al. 2005; Huang et al. 2011), and (2) resto-
ration curves that represent the probability of a component being
repaired in given time for a given damage state (Carpaneto et al.
2005; Liu et al. 2007).

In this paper, both fragility and restoration curves are defined as
parametric cumulative distribution functions, with uncertainties
existing in their parameters primarily as a result of scarce historical
data about component failures. A cumulative distribution is chosen
because of the definition of system failure, discussed later. More-
over, as seen in the case-study demonstration, using cumulative
distributions allows calculation of downtime for the full spectrum
of hazards. However, for point probability estimates, component fail-
ure probabilities may be specified for a single event or group of
events. Characterizing system-level uncertainty that results from un-
certainty at the level of individual components is important for loss
estimation and risk valuation. Yet such systemic characterizations
present a computationally challenging task because fault tree models
of industrial facilities often include a large number (up to 300) of
critical components (US Nuclear Regulatory Commission 1983).
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For such high-dimensional reliability problems, subset simulation
(Au and Beck 2001; Bect et al. 2017) offers an efficient algorithm,
especially for estimating small limit-state probabilities. In subset
simulation, the failure probability at a given threshold is expressed
as the product of failure probabilities corresponding to a series of
larger failure regions. Resampling in the larger failure regions is typ-
ically achieved using Markov chain Monte Carlo methods.

This paper proposes a fault tree methodology for estimating
downtime of industrial facilities. Such methodology allows one
to consider each component of a complex system separately when
estimating the downtime. The uncertainty in the model’s variables
is propagated using subset simulation. An alternative to the sam-
pling algorithms originally used in subset simulation is developed
to increase efficiency by leveraging correlations between parame-
ters in the failure region. The motivating application discussed in
this paper is determining the downtime estimation for a coal-fired
power plant after seismic events.

Background on Fault Tree Approach

Fault Tree Analysis for Business Interruption
Estimation

A fault tree is a graphical model that can be used for conducting a
reliability analysis of any system consisting of discrete components
with independent probabilities of failure (Lapp and Powers 1977;
Vesely et al. 1981; Lee et al. 1985; Ruijters and Stoelinga 2015).
An advantage of the fault tree approach is its intuitive and graphical
modeling of a larger facility or system; by connecting components
using logic gates, the fault tree approach allows for a straightfor-
ward representation of the dependencies between components and
the redundancies within a system. In addition, fault tree analysis
permits one easily to make modifications that change the compo-
nent states or failure probabilities within a system; this modifiabil-
ity enables both sensitivity analysis to identify critical components
and cost–benefit analysis to optimize loss mitigation. Such versa-
tility makes fault tree analysis a suitable approach for reliability
assessments of industrial facilities.

In this analysis, each component is assigned a probability of
failure propagated via logic gates to obtain the failure probability
of a system as a whole. More specifically, AND gates and OR gates
combine the failure probabilities of system components based on
the layout of the system itself. The combined failure probability
PðCÞ of subsystem C, which is composed of components
½c1; : : : ; cnc � that are connected with AND and OR gates, is calcu-
lated as

PðCjANDÞ ¼
Ync
i¼1

PðciÞ ð1Þ

PðCjORÞ ¼ 1 −Ync
i¼1

ð1 − PðciÞÞ ð2Þ

where PðciÞ is the failure probability of the ith component
connected to the gate. Components connected by an OR gate re-
present a “weakest link” or serial system in which the failure of
any component results in system failure. Meanwhile, components
connected by an AND gate represent a “parallel” system in which
all components must fail for the system to fail. Although AND and
OR gates are most commonly applied in engineering risk assess-
ment problems, several other gates (e.g., priority gates and delay
gates) adding specialized functionality can be applied (Roberts
et al. 1981).

To estimate downtime, this study assumes binary component
states: functional or nonfunctional (Porter and Ramer 2012). The
probability that a component is nonfunctional is determined based
on (1) the probability of that component, subject to demand param-
eter s, being damaged, and (2) the probability of that component
being unrepaired before time t. The probability that the ith com-
ponent will be damaged is obtained from fragility curve HðsÞ,
while the probability that the damaged component will be repaired
is obtained from restoration curve GðtÞ. Thus, ð1 − GðtÞÞ gives the
probability that the component will be unrepaired. In a system with
nc components, the probability of component i being in a nonfunc-
tional state at time t subject to demand parameter s is then given as
follows:

PðiÞðs; tÞ ¼ HðiÞðsÞð1 − GðiÞðtÞÞ; i ¼ 1; : : : ; nc ð3Þ
In Eq. (3), the fragility and restoration curves are considered

statistically independent in that the probability of a repair time ex-
ceeding t is defined independently of the probability of damage
under demand parameter s. However, the fragility and restoration
curves can be dependent on damage states as given in the following
equation:

PðiÞðs; tÞ ¼ 1 −Ynd
d¼1

ð1 −HðiÞ
d ðsÞð1 − GðiÞ

d ðtÞÞÞ; i ¼ 1; : : : ; nc

ð4Þ

Damage states classify the incremental levels of damage to a
structure (e.g., slight, moderate, or extensive). Thus, while the func-
tionality of a component is binary (i.e., functional or nonfunc-
tional), the damage to a component can assume multiple states.
The fragility HdðsÞ for a given damage state acts as a weighting
factor for the restoration function in Eq. (4).

In this study, the partial functionality of a system is not consid-
ered for explanatory purposes. It is, however, trivial to consider par-
tial functionality by adding repair states corresponding to the partial
functionality of components, i.e., providing restoration curves for,
say, 50% capacity. Since partial functionality is not considered
here, a system or facility is assumed to be in a nonfunctional state
until all subsystems are brought to a fully functional state. Thus,
only the components critical to system operation are included in
the fault tree model, and the probability of system failure, Ftopðs; tÞ,
is calculated using Eqs. (1) and (2). Using these two equations al-
lows combining the individual failure probabilities of components
based on the system layout of the larger facility. The system failure
probability is defined as the system being non-functional for time
less than t, given a site excitation of magnitude s. Note that this
definition of system failure requires the use of cumulative distribu-
tions for both fragility and restoration curves. In the absence of such
information, the system failure definition may be changed without
altering the general methodology. After evaluating the fault tree for a
range of values for t and s, the cumulative distribution Ftopðt; sÞ of
the system failure probability is then calculated as the probability that
the downtime is less than t for excitation magnitude s. From this
distribution, the mean downtime EðtjsÞ of the system for a given
excitation magnitude s is obtained using the following equations:

fðtjsÞ ¼ dðFtopðt; sÞÞ
dt

ð5Þ

EðtjsÞ ¼
Z ∞
0

t · fðtjsÞdt ð6Þ

where fðtjsÞ is the probability density function associated with the
probability that a component is nonfunctional for time t given site

© ASCE 04020015-2 Nat. Hazards Rev.
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excitation s. fðtjsÞ is obtained by taking the first derivative of
Ftopðt; sÞ with respect to time t.

Fragility Modeling

Fragility curves provide the component failure probability, HðsÞ,
for the fault tree analysis. Within seismic analysis, the fragility
curve of a component reflects the probability of the component
being in or exceeding a certain damage state as a function of
the intensity measure. Fragility curves are functions of intensity
of seismic demand parameters, such as PGA, spectral acceleration,
or interstory drift. Fragility curves are developed using either a
data-based (Sabetta et al. 1998; Basoz et al. 1999; Colombi et al.
2008; Lantada et al. 2010) or a model-based approach (Singhal
and Kiremidjian 1996; Shinozuka et al. 2000; Ellingwood 2001;
Gardoni et al. 2003). The data-based approach relies on post-
disaster site evaluations to aggregate historical data related to a sys-
tem component’s seismic damage; in contrast, the model-based
approach involves developing physics-based numerical models of
system components, simulating a range of seismic forces using
nonlinear dynamic analysis to compute seismic response (Singhal
and Kiremidjian 1996; Ibarra and Krawinkler 2005; Rossetto and
Elnashai 2005; Hamburger et al. 2012). The advantage of a data-
based approach is that one relies on true observations rather than
the approximations made in a model-based approach. On the other
hand, postdisaster data are hard to come by, while model simulations
can be performed over a wide range of disaster scenarios. Detailed
information on fragility curve development and usage is found
in Der Kiureghian (1996), Shome (1999), Shinozuka et al. (2000),
and Pinto et al. (2004).

Typically, fragility curves are represented by a two-parameter
lognormal cumulative distribution function (Pagni and Lowes 2006;
Bradley and Dhakal 2008; Lallemant et al. 2015). The fragility curve
for damage state d is then given as

HdðsÞ ¼ F

"
ln
�

s
μd;s

�
σd;s

#
; d ¼ 1; : : : ; nd ð7Þ

The values for the mean μ and standard deviation σ are deter-
mined by curve fitting to empirical or analytical data (Lallemant
et al. 2015; Noh et al. 2015). The advantages of using a lognormal
cumulative distribution function for this application are twofold.
First, the abscissa has a lower bound of 0, which is convenient
because seismic demand parameters are typically positive values.
Second, multiplication or division of the distribution parameters by
a factor of safety preserves the parameters’ lognormal nature.

The fragility curve typically captures the aleatory uncertainty in
predicting a system’s response (Hamburger et al. 2004; Kircher
et al. 2006). Epistemic uncertainty may also be considered by ar-
tificially adding variance to the distribution function based on the
analyst’s judgment. Outside of regions that have advanced seismic
detection infrastructure (e.g., California and Japan), ground motion
prediction equations are used to estimate a demand parameter, such
as the ground-shaking intensity at the site of a facility (Lallemant
et al. 2015). Specific to the regions where empirical data are
collected, such equations are developed based on earthquake mag-
nitude, distance of the site from the seismic source, and site charac-
teristics, such as soil type. Both intraevent (within each event) and
interevent (between events) uncertainties affect the development of
these equations (Gregor et al. 2014). Typically, several equations rel-
evant to a site of seismic activity are weighted according to expert
opinion and then combined; this strategy of handling equations adds
yet another source of uncertainty to fragility modeling. Meanwhile,
additional complications arise depending on whether ground motion

is considered variable or uniform. Several studies have found that
accounting for spatial variation in ground motion leads to a signifi-
cantly larger probability of damage than that derived using a spatially
uniform ground motion (Lopez et al. 2000; Kim and Feng 2003;
Lupoi et al. 2005; Lou and Zerva 2005; Zhang et al. 2009). There-
fore, when fragility curves are derived without considering spatial
variation in ground motion, their parameter values must be consid-
ered uncertain.

Another limitation of fragility curves is that they are often de-
veloped for discrete damage states ranging from minor damage to
complete collapse (see Fig. 1 showing the uncertainty in estimating
the probability of exceeding four discrete damage states). The
HAZUS (FEMA 2010; Kircher et al. 2006) earthquake loss estima-
tion methodology, for instance, is based on four damage states:
slight (DS1), moderate (DS2), extensive (DS3), and complete (DS4).
Because each of these damage states lacks a standardized, objective
definition, reliance on such terms heightens the uncertainty associ-
ated with applying these fragility curves (Porter 2015). Furthermore,
when the fragility curve for a system component is not readily avail-
able, it is common practice to use available curves that most closely
resemble the component or category of interest. For example, a fra-
gility curve developed for rotating machinery may be used for a
diesel generator in the absence of data for the latter. Such general-
izations and substitutions ultimately add to uncertainty in the fragility
curves.

Because fragility analysis is subject to multiple sources of un-
certainty, it is imperative to consider those sources when specify-
ing probability distributions on the parameters. Typically, fragility
curves take the form of lognormal cumulative distribution function
with two parameters, the median and log standard deviation. In
this study, the two parameters are assigned uniform distributions
with intervals based on judgment from the authors’ field experi-
ence. Using uniform distributions on unknown parameters is also
common in the computer experiment literature (Williams et al.
2006; Higdon et al. 2008; Brown and Atamturktur 2018).

Restoration Modeling

For fault tree analysis, restoration curves provide the probability of
a component being restored to full functionality after a disaster
event, GdðtÞ. Similar to fragility curves, restoration curves can
be obtained through either a data-based or a model-based method.
Data-based methods (i.e., empirical restoration curves) do not

Fig. 1. Representative fragility curves for Damage States DS1–DS4.
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reflect the actual restoration process; instead, they relate hazard in-
tensity to facility downtime. In what may be considered the sim-
plest data-based method, the restoration curve of a facility can be
obtained by fitting a curve to the facility downtime data obtained
from similar facilities that have previously experienced earthquakes
(Chang et al. 1996; Shinozuka et al. 1998; Comerio 2006; Liu et al.
2007; Nateghi et al. 2011). Typically, data related to facility restora-
tion times are scarce; in consequence, expert opinion regarding repair
times is needed to complement the fitted regression models, as was
the case with the restoration curves (i.e., ATC-13 and ATC-25) de-
veloped by Chang et al. (1996). Because empirical restoration curves
are usually generated for generic facility types (e.g., power plants,
water supply systems), they seldom account for the specific charac-
teristics of a facility, including its geographic location, its age, and
the layout of its components.

Unlike the data-based approach, the model-based approach rep-
resents the restoration process using simplified equations and rules
that estimate repair time as a function of specific variables, includ-
ing, but not limited to, the number of available repair personnel, the
repair speed, and the priority of the repair (Isumi et al. 1985; Kozin
and Zhou 1990; Zhang 1992; Logothetis and Trivedi 1997; Chang
and Falit-Baiamonte 2002). The parameters of model-based equa-
tions are often derived empirically from historical data or from
time-based simulations of the restoration process.

As was the case with fragility curves, restoration curves are
often represented as two-parameter lognormal cumulative distribu-
tion functions for varying damage states:

GdðtÞ ¼ F

"
ln
�

t
μd;t

�
σd;t

#
; d ¼ 1; : : : ; nd ð8Þ

The parameters μd;t and σd;t are the mean and standard devi-
ations, respectively, that account for the uncertainty in repair
time. Other distribution functions (e.g., normal, Weibull, logistic,
and exponential) can also be used to represent restoration curves
(Carpaneto et al. 2005; Liu et al. 2007).

Uncertainty in restoration curves primarily stems from the lim-
ited historical data available for specific system components. When
sufficient historical data are entirely unavailable, restoration times
for system components are often informed by subjective expert
opinion, as is the case with the ATC-13 restoration curve. However,
even when some historical data are available, uncertainty often
arises because those data are widely dispersed for reasons includ-
ing, but not limited to, variability in anchorage conditions, variabil-
ity in component weights, variability in damage states, and regional
variations in repair times. As regards regional variations in repair
times, for instance, a heavily damaged steam turbine can be re-
paired faster if the machine parts do not have to be imported from
another country. Thus, in a probabilistic treatment of restoration
curves using a lognormal or normal distribution, the distribution
parameters must be treated as uncertain. Similar to fragility curves,
the two parameters of lognormal distribution are assigned a uni-
form distribution with intervals based on expert judgment.

Probabilistic Approaches to Uncertainty
Quantification in Fault Trees

The means and standard deviations of fragility curves capture vari-
ability in factors that are specific to a facility and its site, such as
ground motion, structural parameters, and soil conditions. Mean-
while, the means and standard deviations of restoration curves cap-
ture variabilities in repair times. However, these parameters must
themselves be treated as uncertain quantities when extrapolating

to other structures and conditions (Tate et al. 2015). Thus, there
are two levels of uncertainty when estimating a system’s downtime:
the first level is represented by the empirical fragility and restora-
tion curves gathered from historical data, while the second level is
represented by the uncertainties in the mean and standard deviation
values themselves.

In relation to fault tree models, three separate approaches to un-
certainty quantification are studied here: the Monte-Carlo simula-
tion, standard subset simulation, and a subset simulation with
multivariate resampling. The implementation, advantages, disad-
vantages, and computational efficiency of each approach are dis-
cussed in what follows. That discussion is followed in the next
section by an application of the three models to a case study.

Monte Carlo Simulation

The traditional approach to quantifying uncertainties involves
separately propagating the two levels of uncertainty mentioned pre-
viously using a double-looped Monte Carlo simulation. The param-
eters representing the uncertainty distribution of each of the n
variables are also considered uncertain. With this approach, N2

samples of each variable’s distribution parameters are first drawn
to represent the second level of uncertainty. Next, N1 samples of
each variable are drawn from the distributions given by each of the
N2 samples, thereby forming an ensemble of N ¼ N1 × N2 sam-
ples. The result of this approach is an ensemble of distributions that
forms what is known as a probability box, or P-box (Karanki et al.
2009). The P-box represents the output quantity as an interval-
valued probability (Fig. 2). Thus, the probability of exceeding a
given response quantity is no longer a single value but an interval;
in similar fashion, the response quantity that can be exceeded with a
given probability is represented by an interval. When a double-
looped Monte Carlo simulation is applied to fault tree analysis,
the simulation may be less than desirable when quantifying uncer-
tainties that involve a large number of input parameters since sparse
sampling can result in misleading results (Hemez and Atamturktur
2011).

Consider the following reliability problem:

pF ¼ Pðθ ∈ FÞ ð9Þ

F ¼ fθ∶gðθÞ < g�g ð10Þ

Fig. 2. Example of P-box representation of uncertainty.
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Here, pF is the probability that the performance function gðθÞ is
less than a threshold g� in the n-dimensional parameter space
Θ ⊂ Rn. The parameters θ ¼ ðθ1; : : : ; θnÞ are uncertain and thus
treated as random variables with associated probability distribu-
tions. To accurately estimate high-consequence, low-probability
events using a Monte Carlo simulation, the number of samples re-
quired is proportional to 1=pF. For example, if pF ¼ 10−5, one
would expect to draw at least 100 × 105 ¼ 107 samples in order
to generate approximately 100 samples in F. This large number
of samples makes Monte Carlo simulations undesirable for estimat-
ing the probabilities of rare events, especially if the function gðθÞ is
computationally demanding.

The coefficient of variation of the Monte Carlo estimate p̂F
of failure probability pF is a function of the target probability
of failure and the number of samples:

covðp̂FÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pF

NpF

s
ð11Þ

p̂F ¼ 1

N

XN
j¼1

IFðθðjÞÞ ð12Þ

Thus, the number of samples required becomes inordinately
large to keep the coefficient of variation reasonably small for a
small target probability. In the next section, a more efficient method
to estimate low-probability events will be discussed.

Subset Simulation

Subset simulation is a Markov chain Monte Carlo–based sampling
technique for efficiently drawing samples from low-probability fail-
ure regions while being insensitive to the number of uncertain param-
eters (Caflisch 1998), thus efficiently estimating probabilities of rare
events. Subset simulation was introduced by Au and Beck (2001) as
a version of the Metropolis–Hastings algorithm (Metropolis et al.
1953; Hastings 1970) that uses the one-dimensional conditional dis-
tributions of each of the parameters. In subset simulation, the target
failure region associated with a small target probability of failure
(rare event) is located through a decreasing sequence of intermediate
failure regions. The probability of failure is then calculated as the
product of a series of the conditional probabilities of failure corre-
sponding to the series of larger failure regions:

pF ¼ PðFÞ ¼ PðF1Þ
Ym
k¼2

PðFkjFk−1Þ ð13Þ

where F ¼ Fm ⊂ Fm−1 ⊂ : : :F2 ⊂ F1 is a sequence of nested
failure regions defined by corresponding threshold values
(g�m; g�m−1; : : : ; g�2; g�1). The conditional probability is approxi-
mated as

PðFkjFk−1Þ¼PðθðkÞ∈FkjθðkÞ∈Fk−1Þ

¼PðgðθðkÞÞ<g�kjgðθðkÞÞ<g�k−1Þ≈ 1

N

X
j

IFk
ðθðkÞj Þ ð14Þ

Here, each θðkÞj is a realization from the conditional distribution
pð· jFk−1Þ obtained using the modified Metropolis algorithm
(MMA) described in what follows.

At each stage of the MMA, a Markov chain is initialized at
θðkÞ ∼ pð· jFk−1Þ. For each parameter θl, l ¼ 1; : : : ; n, a proposed
state ϕl is drawn from a proposal distribution qlð· jθlÞ, as would
be used in the ordinary Metropolis algorithm. Each element of
the candidate state θ�l is set to ϕl with the acceptance probability
given below; otherwise, θ�l ¼ θl. To maintain ergodicity (i.e., the

guarantee that the correct distribution is sampled), it is required that
the support of the proposal distribution completely contain the next
failure region Fk (Robert and Casella 2013). [See Au and Beck
(2001) for a more detailed discussion of how to ensure Fk is
covered.] The candidate state θ� ¼ ðθ�1; : : : ; θ�nÞ is accepted as a
draw from pð· jFkÞ if it lies in the next failure region Fk (in which
case θðkþ1Þ ¼ θ�), and rejected otherwise.

Suppose that the joint distribution of the parameter vector
(without being restricted to any failure region) satisfies pðθÞ ¼
Πn

l¼1πlðθlÞ; i.e., that the parameters are mutually independent
a priori. Then the MMA algorithm of Au and Beck (2001) is as
follows:

Modified Metropolis Algorithm (Au and Beck 2001)

# Initialize
• k ¼ 1
•GenerateN samples of θð1Þ from the known parameter distribution

• Set P̂ðF1Þ ¼ 1
N

P
N
i¼1 IF1

ðθð1Þi Þ
• Set g�1 as the N=10th value in fgð1Þðθð1ÞÞ; : : : ; gðNÞðθð1ÞÞg arranged
in descending order, so that PðF2jF1Þ ¼ 0.1, where F2 ¼
fθ∶gðθÞ < g�1g.

for k ¼ 2; : : :
• for j ¼ 1; : : : ;Ns
# Generate a candidate state θ�:
• for l ¼ 1; : : : ; n

# Step 1: Random walk

• Draw ϕl from the proposal distribution ql
�
· jθðkÞl

�
• Set θ�l ¼ ϕl with the probability min

�
1;

πlðϕlÞ
πlðθðkÞl Þ

�
end for
# Step 2: Check whether candidate is in the next failure
region

• Check if θ� ∈ Fk

θðkÞj ¼
�
θ� if θ� ∈ Fk

θðk−1Þj if θ� ∈= Fk

Set j←jþ 1
end for
• Set g�k as the N=10th value fgð1ÞðθðkÞÞ; : : : ; gðNÞðθðkÞÞg arranged
in descending order

• if g�k < g�target
• m ¼ k
• break for

end for
• cpF¼ P̂ðgðθÞ< g�targetÞ¼ P̂ðF1Þ

Q
m
k¼2 P̂ðFkjFk−1Þ¼ P̂ðF1Þ�0.1m

The choice of a constant P̂ðFkjFk−1Þ ¼ 0.1 is based on the sug-
gestion by Au and Beck (2001). Zuev et al. (2012) show that the
target distribution pð· jF ¼ FmÞ is, in fact, the stationary distribu-
tion of the Markov chain.

Subset Simulation with Multivariate Draw

The modifiedMetropolis algorithm described in Au and Beck (2001)
is most efficient when the parameters are independent with respect
to the failure region, i.e., if IFðθÞ ¼ ΠlIFl

ðθlÞ for some collection of
sets F1; : : : ;Fn. However, a failure region that induces dependence
among the parameters can lead to an undesirably low probability
that a candidate sample θ� will be accepted. For instance, if
F ¼ fθ ¼ ðθ1; θ2Þ∶θ21 þ 1.75θ1θ2 þ θ22 < 1g, then F ≠ F1 × F2

for any choice of F1;F2. In this case the parameters will be
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dependent with respect to the failure region F, and sampling θ1 and
θ2 from their marginal distributions separately can lead to a higher
probability of rejection. To mitigate this situation, an adaptive multi-
variate proposal distribution is used with a covariance matrix that is
estimated from the correlation among the sampled parameters
(Haario et al. 2001; Carlin and Louis 2009) lying in each intermedi-
ate failure region. The difference between the modified Metropolis
algorithm of Au and Beck (2001) and using a multivariate draw lies
in the proposal distribution. Instead of iterative single-site updating
for all parameters, a multivariate proposal distribution leverages the
covariance between the parameters in the failure region to obtain
proposal densities that more closely concentrate on the intermediate
failure regions and, thus, is more likely to propose a state that lies in
each failure region and will be accepted. Making use of this covari-
ance between parameters improves the acceptance rate of the param-
eters in Step 2 of the MMA algorithm. Indeed, such multivariate
proposals for blocks of correlated parameters are known to improve
the performance of more general Markov chain Monte Carlo algo-
rithms (Liu et al. 1994).

In the multivariate draw algorithm, a candidate θ� is generated
by a single draw from a multivariate normal proposal distribu-
tion. If the model parameters have distributions with bounded
support, it is helpful to eliminate the boundaries before using
a normal proposal distribution. This is accomplished first by re-
scaling each θl so that θ lies in the unit hypercube followed by
using the logit transform ηl ≔ logðθl=ð1 − θlÞÞ; l ¼ 1; : : : ; n. A
multivariate normal distribution is determined by its mean and
covariance matrix. On each step of the proposed algorithm, the
mean is taken to be the current state of the Markov chain. To
estimate the covariance matrix Σ1 for this proposal distribution,
first, N samples are generated from the target (uniform) distri-
bution of the parameter θ. Next, the sample covariance S1 is
found for the samples that fall into the first intermediate failure
region, F1, that corresponds to the threshold g�1. When there is a
strong correlation among parameters, the sample covariance ma-
trix S1 may be almost singular, which makes matrix inversions
computationally unstable. Computational stability can be im-
proved by taking Σ1 ≔ S1 þ ιI, where ι is a small constant (a
“nugget”) (Ababou et al. 1994) and I is the identity matrix. At
each iteration k of the subset simulation, N new samples are
drawn using covariance matrix Σk. The covariance matrix is up-
dated at every level k of the subset simulation. If the target fail-
ure region has not yet been reached, then a new intermediate
threshold g�kþ1 and corresponding intermediate failure region
are defined using the most recent samples, which are then used
to construct a new covariance matrix Σkþ1.

The multivariate draw algorithm differs in principle from the
MMA only in the step where a candidate is generated. The algo-
rithm is given below:

Multivariate Draw Algorithm

# Initialize
• k ¼ 1
•GenerateN samples of θð1Þ from the known parameter distribution

• P̂ðF1Þ ¼ 1
N

P
N
i¼1 IF1

ðθð1Þi Þ
• Set g�1 as the N=10th value fgð1Þðθð1ÞÞ; : : : ; gðNÞðθð1ÞÞg arranged in
descending order, thus P̂ðF2jF1Þ ¼ 0.1

• for k ¼ 2; : : :
• Find the covariance matrix Σk ¼ dVarfθðk−1Þg. If Σk is singular
or almost singular, add a nugget to improve computational
stability.

• for j ¼ 1; : : : ;Ns
# Generate a candidate state θ�:
# Step 1: Multivariate draw
• Draw θ� from the multivariate Normal proposal distribution

qð· jηðkÞ;ΣkÞ, where ηðkÞ ¼ ðηðkÞ1 ; : : : ηðkÞn Þ is defined by the
logit transformation above.

Step 2: Check whether candidate is in failure region
• Check if θ� ∈ Fk

θðkÞj ¼
�
θ� if θ� ∈ Fk

θðk−1Þj if θ� ∈= Fk

end for
• Set g�k as the N=10th value fgð1ÞðθðkÞÞ; : : : ; gðNÞðθðkÞÞg arranged
in descending order

• if g�k < g�target
• m ¼ k
• break for

end for
• cpF ¼ P̂ðgðθÞ < g�targetÞ¼ P̂ðF1Þ

Q
m
k¼2 P̂ðFkjFk−1Þ¼ P̂ðF1Þ �0.1m

Note that other advances to subset simulation have been made
since the seminal work of Au and Beck (2001), some of which
address the low acceptance rates that can occur with irregular fail-
ure regions. For instance, Zuev and Katafygiotis (2011) combine
the original subset simulation algorithm with the so-called delayed
rejection algorithm of Tierney and Mira (1999). Their approach is
to test whether a candidate θ� is in the failure region and, if not,
update only those elements of θ� that were left unchanged by the
previous scan of elementwise Metropolis updates, modifying the
acceptance probabilities to preserve ergodicity. In doing so, they
propose a new state that is “close” to the first proposal θ� with
the hopes of accepting the new realization. Such an approach
can inflate the number of times the performance function needs
to be evaluated (since one might have to evaluate it at least twice
to produce one accepted state), which is undesirable when the per-
formance function is computationally expensive. By contrast, the
approach used here jointly proposes a new θ� that is virtually guar-
anteed to differ from the current θ in every element. The multivari-
ate draw approach evaluates the performance function only once
before moving on to consider an entirely new state. The multivari-
ate draw approach proved to be convenient for the fault tree analy-
sis considered here. In the sequel, this approach is briefly compared
to the original subset simulation algorithm. However, a more
exhaustive comparison to more recent modifications and the con-
comitant analyses are beyond the scope of this paper. Such inves-
tigation will be conducted in future work.

Case-Study Demonstration

Power plants present a suitable case study for demonstrating the
methodologies discussed in the previous two sections due to the
complex system layout and the high potential for business interrup-
tion losses following hazardous events, which can exceed property
damage losses. In this section, a fault tree model of a coal-fired
power plant is developed to estimate the downtime of the plant after
seismic events of various magnitudes. Although the facility’s name
and location are undisclosed, the application of presented method-
ologies can be demonstrated regardless.

Development of Fault Tree Model

A typical coal-fired power plant consists of eight major subsystems:
a conveyance system, a boiler, an air recirculation system, a flue
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gas system, a feed water system, a generation system, a cooling
system, and a transmission system. Fig. 3 shows the fault tree
of a representative coal-fired power plant. As the figure indicates,
a majority of the system components are essential and are therefore
connected by OR gates in the fault tree model. Meanwhile, redun-
dancies in the system (e.g., auxiliary silos, tanks, pumps, and trans-
formers) are connected by AND gates. The failure probability of
each subsystem is calculated using Eqs. (1) and (2) depending
on whether the components in the subsystem are in an AND or
OR configuration. Subsequently, the failure probability of the total
system is calculated based on the configuration of the subsystems.
Subsystems may be nested, i.e., one subsystem can contain multi-
ple subsystems connected in AND or OR configurations. The input
hazard is the local PGA of the earthquake. Each component’s fail-
ure probability corresponding to a given PGA and downtime is es-
timated using Eq. (4). After generating the failure probability for a
range of PGA values and downtime values, the mean downtime is
estimated using Eqs. (5) and (6).

The vast majority of empirical fragility curves for grounded
equipment are derived in terms of PGA. Furthermore, generally
acceptable formulas for approximating PGA from felt earthquake

magnitudes (Modified Mercalli Intensity) are readily available in
the pertinent literature (Wald et al. 1999). Moreover, since most
equipment at the power plant is ground-based, PGA is a suitable
intensity measure.

Model Verification

The power plant’s mean downtime, obtained from the process de-
scribed in the background section of the paper, is compared with
the downtime curves provided by HAZUS-MH (FEMA 2010) and
ATC-25 (ATC 1991) for medium-sized power plants. HAZUS-MH
categorizes damage at power generation facilities as medium dam-
age, extensive damage, or complete damage and provides the fa-
cilities’ downtimes (HAZUS-MH MR5 Table 8.22) as functions
of site PGA. These three damage states are combined to estimate
failure probability based on Eq. (4).

ATC-25 was developed in 1991 for the purpose of assessing the
seismic vulnerability of lifeline systems based on the opinion of a
technical advisory group consisting of experts in earthquake engi-
neering. Although industrial design has come a long way in the last
three decades, ATC-25 damage and restoration functions are still

Fig. 3. Fault tree model of coal-fired power plant with two generation units. Some subsystems have been expanded to reveal the constituent
components.
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widely used for risk analysis, primarily because no follow-up or
later study on such a magnitude has been undertaken since that
time. ATC-25 provides the downtime of power plants as a function
of the Modified Mercalli Intensity, which is converted to PGA
using relations from Wald et al. (1999) for comparison. This con-
version produces an upper and lower estimate of PGA values cor-
responding to Modified Mercalli Intensity values, thus generating
two downtime curves. Downtimes (from ATC-25 Fig. B-45) are
inferred based on the assumption that a power plant is functional
only when 100% restoration of capacity is achieved.

For validation, three past events at the case-study power plant
and their respective downtimes are available (EPRI 2007). The
events and their corresponding PGA values and downtimes are re-
ported in Table 1. As seen in Fig. 4, the three events lie within the
2σ bounds obtained from uncertainty analysis considering the un-
certainty in the model parameters discussed in the next subsection.
Fig. 4 also compares the downtimes obtained from the fault tree
analysis of the power plant to the estimates provided by HAZUS
and ATC-25 for generic fossil fuel power plants. The gray band in
Fig. 4 shows 2σ obtianed by uncertainty analysis using Monte
Carlo simulation. Data in the figure make it clear that, compared
to HAZUS, the fault tree model provides almost 60% higher down-
time estimates. Although both HAZUS estimates and the lower
limit of the ATC-25 estimates fail to capture the past events at
the power plant, the upper limit of the ATC-25 estimates does show
a closer agreement with the mean prediction of the fault tree model.

The discrepancy between the fault tree model and the empirical
curves of HAZUS and ATC-25 can be attributed to the fact that
unique features of the power plant are not incorporated in the em-
pirical curves. For instance, the coal offloading pier at the case-
study power plant accounts for the highest contribution to the

plant’s downtime, yet most power plants included in the empirical
databases do not have an offloading pier, which results in an under-
estimation of downtime. In addition, the empirical relations do not
incorporate the component repair times that are dependent on geog-
raphy, availability of labor, or infrastructure, for example. Each of
these factors is best known only by plant management. For exam-
ple, total damage to the boiler could require ordering new machi-
nery, a situation taking anywhere from a few days to several months
depending on the plant’s location with respect to the distributor. As
opposed to empirical curves, fault tree analysis allows for directly
taking into consideration both management’s insight into repair
times and the extent of damage following an earthquake.

Characterizing Component Uncertainties

The fragility and restoration curves developed for this research
give the probability that each component of the fault tree will
be in a nonfunctional state. Three damage states are consider for
each system component of the case-study power plant: low,
medium, and high. The failure probability of each component
is therefore defined by three fragility curves and three restoration
curves corresponding to the three damage states. Both the fragility
and the restoration curves are defined by two parameters: the
mean and the standard deviation. The categorization of damage
states and the selection of parameters for the plant components re-
sult in a total of 12 parameters for each component (3 damage
states × 2 parameters of lognormal function for both fragility and
restoration curves ¼ 12 parameters), or 1,416 parameters for the
118 system components. Although the component failure probabil-
ities are combined using simple arithmetic at the fault tree logic
gates, the analytical propagation of uncertainty becomes impracti-
cal because of the high number of uncertain parameters.

As discussed in the “Fragility Modeling” section, the fragility
and restoration parameters for each component are uncertain, and
the uncertainty for each component is specified independently.
Hence, the analysis here is not restricted by the type of prior
distribution used for each component. Table 2 in the appendix pro-
vides the mean values of the fragility and restoration curve param-
eters (i.e., the lognormal distribution mean μ and standard deviation
σ) for all components of the power plant. To demonstrate the uncer-
tainty quantification techniques discussed in the previous section,
�40% and �30% uniform uncertainty is assumed in specifying
the mean and standard deviations, respectively, for each component
and each damage state. These intervals were deemed reasonable for
the unknown parameters based on existing expert opinion for dem-
onstration purposes. Within these intervals, all values of the param-
eter are thought to be equally likely. In practice, however, each
component will have an independent distribution obtained through
expert judgment or empirical data.

The uncertainty in the mean downtime for a range of demand
parameter values is estimated using the three approaches discussed
in the previous section. The results are discussed in the following
subsections. The mean downtime is estimated based on Eqs. (5) and
(6) for s ranging from 0 to 2g in increments of 0.2g. To build the
empirical distribution FtopðtjsÞ, downtime (t) is considered in 2-day
increments for up to 300 days. Thus, for each value of s, a mean
downtime estimate is obtained for the power plant using the com-
ponent fragility and restoration parameters.

Monte Carlo Simulation

A total of N ¼ 1,500 sample sets of the 1,416 input parameters are
drawn from their respective probability distributions. N ¼ 1,500 is
chosen to enable one-to-one comparison with subset simulation

Table 1. Peak ground acceleration during and corresponding downtimes
after recorded earthquakes at power plant

Earthquake Magnitude
Peak ground

acceleration (g)
Downtime
(days)

1965 La Ligua M7.4 0.27 32
1971 Valparaiso M7.5 0.16 23
2010 Maule M8.8 0.2 11

Fig. 4. Fault tree model predictions of downtime for case-study power
plant compared with ATC-25 and HAZUS predictions.
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discussed in subsequent subsections, where the algorithm is set up
to make 1,500 calls to the limit state function, resulting in the same
computational demand. This gives 1,500 values of downtime
EðTjsÞ for PGA (s) values ranging from 0 to 2g, plotted in Fig. 5,
along with the mean curve and �1 standard deviation and coeffi-
cients of variation for the case-study power plant. A sufficiently
large sample size is vital for prediction at the tails of the distribu-
tion. Fig. 6 shows the characterization of the tail of the cumulative
distribution at s ¼ 1g with various sample sizes of N. It is observed

that N ¼ 1,000 is unable to characterize the distribution below
P ¼ 0.001. As seen in the figure, when a distribution with N ¼
2E5 is assumed as a reference solution, the discrepancy in the prob-
ability estimate decreases with increasing sample size.

Subset Simulation with Modified Metropolis Algorithm

If the subset simulation consists of five intermediate levels, the use
of a sample size of N ¼ 300 per level results in a total of 1,500

Table 2. Mean parameters for fragility and restoration curves of case-study power plant’s components

Component

Fragility parameters Restoration parameters

Low damage
Medium
damage High damage Low damage Medium damage High damage

μ (g) σ μ (g) σ μ (g) σ μ (days) σ μ (days) σ μ (days) σ

Tipper car 0.15 0.4 0.45 0.5 1.4 0.6 5 0.3 8 0.3 30 0.3
Coal silo 0.45 0.47 0.69 0.32 0.89 0.21 5 0.5 10 0.5 45 0.5
Coal pulverizer 0.25 0.5 1.2 0.7 6 0.8 5 0.3 8 0.3 30 0.3
Furnace/drum 0.45 0.47 0.69 0.32 0.89 0.21 5 0.5 10 0.5 45 0.5
Economizer 0.25 0.5 1.2 0.7 6 0.8 5 0.3 8 0.3 45 0.3
Super heater 0.25 0.5 1.2 0.7 6 0.8 5 0.3 8 0.3 30 0.3
Reheater 0.25 0.5 1.2 0.7 6 0.8 5 0.3 8 0.3 30 0.3
Steel frame support 0.25 0.5 1.4 0.6 2 0.6 7 0.3 15 0.3 60 0.3
Piping 0.25 0.35 0.4 0.35 1 0.35 5 0.3 8 0.3 30 0.3
Forced draft fan 0.25 0.5 1.2 0.7 6 0.8 5 0.3 8 0.3 30 0.3
Air recirculation fan 0.25 0.5 1.2 0.7 6 0.8 5 0.3 8 0.3 30 0.3
Air preheater 0.25 0.5 1.2 0.7 6 0.8 5 0.3 8 0.3 30 0.3
Air ducts 0.5 0.35 0.8 0.35 2 0.35 5 0.3 8 0.4 30 0.5
Feed water pump 1 0.3 1.5 0.3 2 0.3 5 0.3 8 0.3 30 0.3
Feed water storage tank 0.38 0.8 0.86 0.8 1.18 0.61 5 0.5 10 0.5 45 0.5
Deaerator tank 0.38 0.8 0.86 0.8 1.18 0.61 5 0.5 10 0.5 45 0.5
Intake pump 1 0.3 1.5 0.3 2 0.3 5 0.5 8 0.5 10 0.5
Spray dryer absorber 1.6 0.3 2 0.35 3 0.35 5 0.3 8 0.3 30 0.3
Fabric filter 1.6 0.3 2 0.35 3 0.35 5 0.3 8 0.3 30 0.3
Atomizer 1.6 0.3 2 0.35 3 0.35 5 0.3 8 0.3 30 0.3
Exhaust ducts 1.2 0.5 1.9 0.5 2 0.35 5 0.3 8 0.4 30 0.5
Electrostatic precipitator 1.6 0.3 2 0.35 3 0.35 5 0.3 8 0.3 30 0.3
Desulfurization system 0.7 0.48 1.1 0.35 1.29 0.28 5 0.5 8 0.5 45 0.5
Control room 0.8 0.3 1.2 0.3 1.5 0.3 7 0.3 10 0.3 30 0.3
Exhaust stack 0.2 0.3 0.75 0.4 1.1 0.3 10 0.3 30 0.3 60 0.3
High-pressure turbine 1.2 0.5 1.8 0.5 3.2 0.5 10 0.3 25 0.4 60 0.4
I=m-pressure turbine 1.2 0.5 1.8 0.5 3.2 0.5 10 0.3 25 0.4 60 0.4
Low-pressure turbine 1.2 0.5 1.8 0.5 3.2 0.5 10 0.3 25 0.4 60 0.4
Diesel generator 2 0.4 3.2 0.4 4 0.4 10 0.3 25 0.4 60 0.4
Generator 1 0.3 1.5 0.3 2 0.3 10 0.3 25 0.4 60 0.4
Transformer 1.2 0.6 1.5 0.6 2 0.6 8 0.2 20 0.3 45 0.3
Transmission line 1.2 0.6 1.5 0.6 2 0.6 5 0.2 8 0.3 30 0.3
Cool water pump 1 0.3 1.5 0.3 2 0.3 5 0.3 8 0.3 30 0.3
Condenser 0.5 0.3 0.8 0.3 2.5 0.3 5 0.3 8 0.3 30 0.3
Condensate pump 1 0.3 1.5 0.3 2 0.3 5 0.3 8 0.3 30 0.3
Cooling water pipeline 1.5 0.3 2 0.3 2.5 0.3 5 0.3 8 0.3 30 0.3
Intake pipe 0.5 0.3 0.8 0.3 2.5 0.3 5 0.3 8 0.3 30 0.3
Pier 0.21 0.72 0.46 0.83 0.89 1.09 10 0.3 16 0.3 75 0.3
Clam shell crane 0.29 0.3 0.45 0.3 0.67 0.3 5 0.3 8 0.3 30 0.3
Conveyor system 0.3 0.3 1.4 0.3 2 0.3 6 0.3 12 0.3 60 0.3
Siphon pipeline 0.3 0.3 0.8 0.3 2.5 0.3 5 0.2 15 0.3 45 0.3
Service water tank 0.38 0.8 0.86 0.8 1.18 0.61 5 0.5 10 0.5 45 0.5
Diesel fuel tanks 0.38 0.8 0.86 0.8 1.18 0.61 5 0.5 10 0.5 45 0.5
Emergency generator 1 0.3 1.5 0.3 2 0.3 10 0.3 25 0.4 60 0.4
Off-site power 0.3 0.3 0.6 0.3 0.8 0.3 5 1 10 1 20 1
Turbine building 0.41 0.64 0.76 0.64 1.46 0.64 7 0.8 15 0.8 60 1
Switchgear 0.7 0.3 1.4 0.3 2 0.6 5 0.2 8 0.3 30 0.3
Battery racks 1 0.3 1.5 0.3 2 0.3 5 0.2 8 0.3 30 0.3
Condensate water tank 0.38 0.8 0.86 0.8 1.18 0.61 5 0.5 10 0.5 45 0.5
Ash silo 0.38 0.8 0.86 0.8 1.18 0.61 5 0.5 10 0.5 45 0.5
Ash-handling system 0.25 0.5 0.38 0.5 0.53 0.6 5 0.3 10 0.3 30 0.3
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samples. The failure probability p0 at each iteration is kept constant
at 0.1, and the intermediate threshold gtk is chosen accordingly.
Thus, failure probability at the intermediate level m is 0.1m. With
m ¼ 5, the downtime values corresponding to Pf ¼ 10−5 are
achievable with only 1,500 samples. The resulting downtime cumu-
lative distributions for increasing values of s are given in Fig. 7. The
subset simulation estimates the power plant’s threshold values of
downtime d only at failure probability Pf. The intermediate thresh-
old values corresponding to PðiÞ

f > Pf > Pðiþ1Þ
f are approximated

through linear interpolation. To reduce approximation errors, p0

can be increased, although a higher number of iterations leads
to additional computational cost in attaining the target failure prob-
ability. For instance, p0 ¼ 0.25 and a target probability of 10−5
require m ¼ f½logð10−5Þ�=½logð0.25Þ�g ≈ 9 intermediate levels, or
2,700 samples.

Subset Simulation with Multivariate Draw

In this section, the modified Metropolis algorithm is replaced by a
multivariate draw to generate the candidate parameter set using the
algorithm discussed in the previous section. The use of a multivari-
ate draw results in a higher acceptance rate of samples in the failure
region of the power plant. For a random walk multivariate Markov
chain, a lower acceptance probability of 23.4% (Roberts et al. 1997,
Carlin and Louis 2009) is typically preferred to improve efficiency
in converging to the target distribution. For this study, the target
distribution, which is already known to be uniform, is used as
the initial distribution for the parameters. Since the initial states
are distributed as the target distribution, convergence to the target
distribution is immediate, and the only concern becomes sampling
from the truncated part of the parameter space (i.e., it is desirable to

Fig. 5. Range of s (PGA in g) versus EðTjsÞ (mean downtime in days) relations obtained for power plant via uncertainty propagation and corre-
sponding coefficients of variation (N ¼ 1,500).

Fig. 6. Cumulative distribution of power plant’s downtime correspond-
ing to s ¼ 1 × g estimated with different values of sample size N. The
arrow heads show the end of the cumulative distribution curve.

Fig. 7. Cumulative distribution functions of the power plant’s down-
time for demand parameter s, ranging from 0 to 2g obtained using
subset simulation with a modified Metropolis algorithm.
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have an acceptance rate much higher than 0.234). Fig. 8 shows
the cumulative distribution function of the power plant’s downtime
obtained using subset simulation with multivariate draw.

Fig. 9 presents the power plant’s downtime distribution corre-
sponding to s ¼ 1g obtained from Monte Carlo simulation, subset
simulation using the modified Metropolis algorithm, and subset
simulation using a multivariate draw. The cumulative distributions
obtained using these three methods are compared with a reference
solution generated using a Monte Carlo simulation with N ¼ 2E5.
The advantage of using multivariate proposals over marginal pro-
posals lies in lower computational time for the conditional sam-
pling since the N samples are drawn collectively rather than
individually; for this study’s fault tree model, multivariate propos-
als result in three times less computational effort for the resampling
algorithm using MATLAB’s mvrnd (Matlab 2018) method. It is to

be noted, however, that the majority of the computational effort in
the case-study model is due to the calls to the limit state function,
i.e., the fault tree model. Thus, the computational time for both
algorithms remains practically equal. The primary advantage of
using multivariate draw is in the increased acceptance rate: a sam-
ple acceptance rate of up to 80% was achieved using a multivari-
ate draw, as opposed to approximately 20% with the modified
Metropolis algorithm. This rate is expected to vary by system
modeled. It is worth noting that the acceptance rate varies with
the iteration of the subset simulation. However, the acceptance
rate could be raised even higher by calibrating a scalar multiplier
of the covariance matrix Σi for each intermediate failure region Fi
during an initial burn-in period for each such region (Carlin and
Louis 2009).

Conclusions

The main contribution of this paper is to provide a framework for
the downtime estimation of complex industrial facilities using a
system-modeling approach while considering the uncertainty in
the model parameters using an efficient simulation algorithm. Re-
lying on average estimates gives no indication of the probability of
rare events that result from worst-case scenarios. Fault tree analysis
allows for the consideration of the unique properties of a facility,
including component layout, specific component interdependen-
cies, system redundancies, individual component failure probabil-
ities as functions of ground motion, beliefs about restoration time
for each component, and particular damage states. Such flexibility
allows for the incorporation of facility engineers’ educated opinions
regarding repair times and damage ratios. The input parameters of
the fault tree model are the probability distribution parameters of fra-
gility and repair times, both of which are uncertain for a variety of
reasons. These uncertainties represent the degree of belief in the in-
put parameter values that must be propagated to predict system-level
downtime.

The direct Monte Carlo approach to uncertainty quantification
yields accurate output distributions, but at the cost of high computa-
tional time, especially for identifying downtimes corresponding
to rare occurrences (i.e., those with a very low probability). Mean-
while, a widely used rare-event simulation technique, subset simu-
lation, provides exceptional computational efficiency in estimating
the low-probability tails of downtime distribution. Subset simulation
achieves target failure probability by sampling in intermediate failure
regions that correspond to decreasing failure probabilities. The origi-
nal subset simulation algorithm ignores the correlation between
variables in intermediate failure states, resulting in suboptimal accep-
tance rates for the sampling. In this paper, however, it is shown that
acceptance rates can be increased by replacing the original algorithm
with a multivariate draw technique that leverages the sample covari-
ance matrix. Using a multivariate draw is significantly more efficient
when the parameters are highly correlated.

In this paper’s case study, downtime of a coal-fired power plant
was estimated for seismic hazard. The traditional Monte Carlo ap-
proach, subset simulation using a modified Metropolis algorithm,
and subset simulation using multivariate draw were used to quan-
tify the probability of the power plant exceeding a given downtime.
It was found that the multivariate draw algorithm increased the
acceptance rate resampling in the failure region, resulting in fewer
repeated samples.

Thus, using the fault tree modeling and subset simulation with a
multivariate draw algorithm allows for estimating downtime under
any hazard by considering the layout of the facility, while also ef-
ficiently quantifying the uncertainty in the downtime. In the next

Fig. 8. Cumulative distribution functions of the power plant’s down-
time for demand parameter s, ranging from 0 to 2g obtained using sub-
set simulation with multivariate draw.

Fig. 9. Comparison of cumulative distribution functions of the power
plant’s downtime corresponding to s ¼ 1g with the three studied
methods.
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stage of this research, the authors will focus on expanding this
study’s methodology to include other industrial facilities and to ac-
count for multiple possible secondary perils (e.g., a tsunami follow-
ing an earthquake, as was experienced during the Fukushima
tragedy).

Disclaimer

The contents of this paper represent the views of the authors alone
and not those of American International Group or Clemson
University.

Notation

The following symbols are used in this paper:
C = Fault tree subsystem failure event;
c = Fault tree component of a fault tree;
d = Discrete damage state of a component;
F = Failure region, or set of all θ such that IFðθÞ¼1;
Fk = Failure region in the parameter space corresponding

to the kth level in subset simulation, (k¼1; :::;mÞ;
F ð̄Þ = Cumulative distribution function of the standard

normal distribution;
Ftopðs;tÞ = Probability of system of components being

unrepaired after time t, following an event of
magnitude s;

GdðtÞ = Restoration curve; probability of the restoration time
exceeding time t when a system component is in
damage state d;

gðθÞ = Limit state/performance function;
g� = Threshold value for limit state function;

g�target = Rare event threshold for which failure probability is to
be estimated;

HdðsÞ = Fragility curve; probability of exceeding damage state
d given the demand parameter s;

IFðθÞ = Indicator function in failure region F (1 if system has
failed i.e., gðθÞ<g�F; 0 otherwise);

k = Level in a subset simulation;
m = Number of intermediate failure modes in subset

simulation;
N = Number of samples in Monte-Carlo simulation;
Ns =Monte Carlo sample size from the Markov chain;
n = Number of uncertain parameters in a system model,

i.e. number of dimensions;
nc = Number of components in a subsystem;
nd = Number of discrete damage states of a component;

Pð·Þ = Probability of a discrete event;
pF = Rare failure probability or probability of rare event;
p̂F = Estimate of failure probability;

qlð· jθlðkÞÞ = Univariate conditional proposal distribution of the
parameter θlðkÞ; l¼1; :::;n;

r = Acceptance ratio;
S1 = Sample covariance matrix;
s = Intensity of hazard/peril, e.g., peak ground

acceleration during an earthquake;
t = Time since occurrence of hazardous event for which

the system is non-functional;
η¼ðη1; :::; ηnÞ = Logit transform of θ;
θ¼ðθ1; :::; θnÞ = Uncertain parameters of the system

being modeled;

θðkÞj ¼ðθðkÞ1 ; :::; θðkÞn Þj = jth sample in the failure region
Fk; j¼1; :::;Ns;

θ�l ¼ ðθ�1; :::; θ�nÞl = Candidate state, l¼1; :::;n;
ι = Nugget term;

μd;s =Median parameter of the fragility function for damage
state d and earthquake intensity s;

μd;t =Median parameter of the restoration function for
damage state d and time t since event;

πlðθlðkÞÞ = Univariate marginal distribution of the parameter
θlðkÞ; l¼1; :::;n;

Σ = Covariance matrix;
σd;s = Log standard deviation parameter of the fragility

function for damage state d and earthquake intensity
s;

σd;t = Log standard deviation parameter of the restoration
function for damage state d and time t since event;
and

ϕl = Proposed value for θ�l .
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